Sensorimotor distance: A fully grounded and efficient measure of semantic similarity

Cai Wingfield c.wingfield@lancaster.ac.uk

Louise Connell l.connell@lancaster.ac.uk

Lancaster University

Introduction

- Computational modelling and experimental design across the cognitive sciences rely on measures of semantic similarity between concepts.
- We present a new measure of sensorimotor distance between concepts.
- Unlike other measures, sensorimotor distance is **fully** grounded in sensorimotor experience.
- Here we investigate how sensorimotor distance explains human similarity judgements.
- We further present an online tool for computing sensorimotor similarity for nearly 800 million pairs of concepts.

A fully grounded measure

- Sensorimotor distance is based on the Lancaster Sensorimotor Norms (Lynott et al., 2020).
- Six perceptual dimensions: vision, touch, audition, olfaction, taste and interoception.

• Five action-effector dimensions: Hand/arm, leg/foot, torso, mouth/ throat and head (excluding mouth/

- Norms have ratings for nearly 40,000 concepts.
- This allows comparisons of concepts based on their multidimensional sensorimotor experience profiles.

apple

1: soot (0.0043)

3: toner (0.0075)

Visualising a

multidimensional arrangement

Nearest neighbours

2: gunk (0.0058)

4: residue (0.0080)

of "ash"

anticipation

Sensorimotor distance explains human similarity judgements

Comparison to other measures of semantic similarity

 We modelled human similarity judgement datasets using sensorimotor distance alongside three other traditional measures.

Measure	Relies on
WordNet (Jiang & Conrath, 1997)	Distance in a taxonomic database.
Feature overlap (Buchanan et al., 2019)	Counting shared semantic features from a norming study
LSA (Landauer & Dumais, 1997)	Linguistic-distributional similarity of words.

- We modelled three datasets of human similarity judgements.
- Sensorimotor distance was a good predictor of similarity judgements, comparable with other measures.
- No single predictor was preferred for all datasets.

Dataset	N (pairs)
WordSim (Finkelstein et al., 2002)	353
Simlex (Finkelstein et al., 2002)	999
MEN (Bruni et al., 2014)	3,000

variance

Correlations with human similarity ratings WordSim Simlex

Correlations between predictors

- Sensorimotor distance was somewhat correlated with other measures (|R| = .212 - .300).
- Other measures were somewhat correlated with each other (|R| = .224 - .377).
- Patterns of correlations consistent over datasets.

sensorimotor distance calculations and visualisations

web app

A web app for

- We present a tool for computing and visualising sensorimotor distance.
- Coverage of nearly 800 million concept pairs.
- Access the Free and open source.

Modes of operation

 Compute distances: one-to-one, one-to-many, many-to-many.

- Visualise arrangements of select concepts.
- Find nearest neighbours.

Sensorimotor distance

Computing sensorimotor distance

- Sensorimotor distance between two concepts is computed using their 11-dimensional sensorimotor rating vectors.
- We recommend cosine distance, which we present here.
- We also tested correlation, Euclidean and Minkowski-3 distances; fits to human data weren't as good

Visualising relationships in sensorimotor space

- By computing pairwise distances between concepts, we visualise their multidimensional arrangement in sensorimotor space.
- Sensorimotor information applies to both concrete and abstract categories (Lynott et al., 2020), and reveals semantic structure amongst collections of concepts.

Capturing detailed conceptual relationships

- Sensorimotor ratings encode surprisingly nuanced information about concepts and their relationships.
- For example, this is revealed by searching for **nearest neighbours**.

surprise **Sensorimotor distance** explains unique

Sensorimotor distance explains variance missed by other measures

- We entered sensorimotor distance into hierarchical regressions with each of the other predictors.
- For all datasets, sensorimotor distance explained substantial additional variance over the other predictor.
- In two cases, sensorimotor distance was the better predictor.

Sensorimotor distance consistently explains variance

- We entered all four predictors into a single hierarchical regression.
- No single predictor was consistently preferred over all datasets.
- Sensorimotor distance was consistently the second best, and was included in every best model.
- BF-inclusions for sensorimotor distance were consistently high $(\log BF = 9.7-47.9).$

Predictors Dataset (Total R²) (log BF-inclusion) 1 (Best) 4 (Weakest) Not a predictor LSA WordNet Feature overlap 33.4 48.9% LSA Feature overlap 33.8% MEN LSA 262.4 WordNet 60.4%

Findings: Sensorimotor distance...

- 1. ...is a fully grounded measure of semantic similarity.
- 2. ...captures a consistent portion of behavioural variance, comparable with other measures.
- 3. ...captures unique information missed by other measures.
- 4. ...provides a useful tool for experimental design and computational modelling.

References

Lancaster Sensorimotor Norms: Lynott, D., et al. (2020). Behavior Research Methods. doi:10.3758/ s13428-019-01316-z Simlex: Hill, F., et al. (2016). Computational Linguistics. doi:10.1162/COLI_a_00237

WordSim: Finkelstein, L., et al. (2002). ACM Transactions on Information Systems. doi:10.1145/503104.50311

MEN: Bruni, E., et al. (2014). Journal of Artificial Intelligence Results. doi:10.1613/jair.4135 LSA: Landauer, T. K. & Dumais, S. T. (1997). Psychological Review. WordNet: Jiang, J. J. & Conrath, D. W. (1997)

arXiv:cmp-lg/9709008

Feature overlap: Buchanan,

Methods. SPoSE: Hebart, M. N., et al. (2020) Nature Human RSA: Kriegeskorte, N., et al. (2008) Frontiers in Systems Neuroscience.

E. M., et al. (2019)

Behavior Research

Download poster PDF